electrons and one $5 f$-electron or with seven valence electrons and no electron in the $5 f$ subshell. As far as the metal goes, neptunium is thus to be considered either as a uranide element or as a homologue of technetium and rhenium. Table 2 compares the metallic radii of the series $\mathrm{Fr}-\mathrm{Np}$ with other series in the periodic system. The radii given for $\mathrm{Fr}, \mathrm{Ra}, \mathrm{Ac}$ are extrapolated values. Table 3 gives the metallic radii to be expected for the elements $\mathrm{Fr}-\mathrm{Am}$ for various numbers of $5 f$ electrons.

It is interesting to note that $\mathrm{Pa}, \alpha-\mathrm{U}, \beta-\mathrm{U}$ and Np all exhibit unique crystal structures. The formation of four strong bonds of covalent character observed for neptunium and the low-temperature form of
uranium may be typical for the trans-protactinic metals.

Dr James C. Wallman is sincerely thanked for the loan of his metal preparations, and so is Miss Anne Plettinger for having taken the diffraction patterns.

References

Fried, S. (1945). Metallurgical Project Report CN-3053. Fried, S. \& Davidson, N. R. (1949). National Nuclear Energy Series 14 B, 1085.
Westrum, E. F. Jr. \& Eyring, L. (1951). J. Amer. Chem. Soc. 73, 3399.
Zachariasen, W. H. (1952). Acta Cryst. 5, 19.

Crystal Chemical Studies of the 5f-Series of Elements. XVIII. Crystal Structure Studies of Neptunium Metal at Elevated Temperatures

By W. H. Zachariasen
Argonne National Laboratory and Department of Physics, University of Chicago, Chicago, Illinois, U.S.A.

(Received 13 June 1952)

Abstract

The orthorhombic room-temperature form of neptunium metal ($\alpha-\mathrm{Np}$) is found to be stable up to $278^{\circ} \mathrm{C}$. Unit-cell dimensions and thermal expansion coefficients in the range $20^{\circ}-278^{\circ} \mathrm{C}$. are given.

At $278 \pm 5^{\circ} \mathrm{C}$. $\alpha-\mathrm{Np}$ transforms into $\beta-\mathrm{Np}$, which is tetragonal. The tetragonal modification is stable up to about $540^{\circ} \mathrm{C}$. At $313^{\circ} \mathrm{C}$. the dimensions of the unit cell containing four atoms are $$
a_{1}=4.897 \pm 0.002, a_{3}=3.388 \pm 0.002 \AA
$$ and the calculated density at this temperature is $\varrho=19.36 \mathrm{~g} . \mathrm{cm} .^{-3}$. The atomic positions in the β-Np structure are: $2 \mathrm{~Np}(\mathrm{I})$ in $(0,0,0),\left(\frac{1}{2}, \frac{1}{2}, 0\right) ; 2 \mathrm{~Np}$ (II) in ($\left.\frac{1}{2}, 0, u\right),\left(0, \frac{1}{2}, \tilde{u}\right)$ with $u=0.375 \pm 0.015$. As in $\alpha-\mathrm{Np}$, each atom forms four short bonds.

There is strong indication of a transition point at about $550^{\circ} \mathrm{C}$. Above this point the metal seems to be cubic body-centered ($\gamma-\mathrm{Np}$) with $a=3.52 \AA$, and this phase is presumably stable up to the melting point at $640^{\circ} \mathrm{C}$.

The structural relationships between the three forms of neptunium metal are discussed.

Introduction

The crystal structure of neptunium metal at room temperature was described in a recent paper (Zachariasen, 1952). The present paper gives the results of crystal structure studies of neptunium metal in the range from room temperature to the melting point, which is at $640^{\circ} \mathrm{C}$ (Westrum \& Eyring, 1951). Owing to serious oxidation difficulties, the results applying to the range of $550^{\circ}-640^{\circ} \mathrm{C}$. are given with some reservation, and it is planned to re-examine this temperature range as soon as a new metal sample becomes available.

Experimental procedure

The sample of neptunium metal used in this investigation is the same as was described in connection with the crystal structure determination of the roomtemperature form. The sample, which had been
prepared by James C. Wallman, weighed about 0.5 mg , and consisted of several flattened pieces of metal. The metal pieces were contained in evacuated thinwalled glass capillaries. Fused silica served as capillary material in all experiments carried out at $350^{\circ} \mathrm{C}$. and higher.

The diffraction patterns were all taken with $\mathrm{Cu} K$ radiation filtered through nickel foil. The hightemperature camera described by Buerger, Buerger \& Chesley (1943) was used. The calibration curve relating temperature at the sample to power input to the heating coil was obtained using Jay's (1933) data for the thermal expansion of quartz and the known transition points for $\mathrm{NH}_{4} \mathrm{ClO}_{4}\left(236^{\circ}\right.$ C.), KClO_{4} $\left(297^{\circ} \mathrm{C}\right.$.), and quartz ($575^{\circ} \mathrm{C}$.).

Since more than one form of neptunium metal was found to exist, the room-temperature form will be designated as the α form.

Observations on $\boldsymbol{\alpha}$-neptunium

The α form of neptunium metal was found to be stable up to 278° C., at which temperature it transforms into the β form to be discussed in the next section. The transition point may be given as $278 \pm 5^{\circ} \mathrm{C}$.

The results on the unit-cell dimensions and calculated density of the orthorhombic $\alpha-\mathrm{Np}$ are given in Table 1.

		$\text { of } \alpha-\mathrm{Np}$	calculate	sity
Temp. (${ }^{\circ} \mathrm{C}$.)	$a_{1}(\AA)$	$a_{2}(\AA)$	$a_{3}(\AA)$	$\underset{\left(\mathrm{g} . \mathrm{cm} .^{-3}\right)}{\varrho}$
20	4.723 ± 0.001	4.887 ± 0.002	6.663 ± 0.003	20.45
212	$4 \cdot 746 \pm 0.002$	4.909 ± 0.003	6.704 ± 0.004	$20 \cdot 13$
275	$4 \cdot 752 \pm 0 \cdot 002$	4.920 ± 0.003	6.722 ± 0.004	20.01

The values for room temperature are those reported earlier. The results of Table 1 correspond to the following values for the linear coefficients of thermal expansion in the $20^{\circ}-275^{\circ} \mathrm{C}$. range:
$\alpha_{100}=24 \times 10^{-6}, \quad \alpha_{010}=25 \times 10^{-6}, \quad \alpha_{001}=34 \times 10^{-6}$.

The crystal structure of $\boldsymbol{\beta}$-neptunium

The β phase of neptunium metal is stable in the range from $278^{\circ} \mathrm{C}$. to at least $530^{\circ} \mathrm{C}$. There is strong indication that the β form changes into a γ form at about $550^{\circ} \mathrm{C}$.

X-ray diffraction data for $\beta-\mathrm{Np}$, as obtained at 313° C., are listed in Table 2. The observed sine squares correspond to a primitive tetragonal translation group. The unit-cell dimensions and calculated density at various temperatures are shown in Table 3 . The density is calculated on the basis of four atoms per unit cell. The values for $20^{\circ} \mathrm{C}$. are obtained by extrapolation on the assumption that the expansion coefficients would be the same in the range $20^{\circ}-282^{\circ} \mathrm{C}$. as in the interval $282^{\circ}-425^{\circ} \mathrm{C}$.

The linear coefficients of thermal expansion for the interval $282^{\circ}-425^{\circ} \mathrm{C}$. are

$$
\alpha_{100}=\alpha_{010}=64 \times 10^{-6}, \alpha_{001} \approx 0
$$

All reflections $H_{1} H_{2} 0$ are absent unless H_{1} and H_{2} are both even. This observation, together with the conclusion that the unit cell must contain four atoms, shows that the atomic positions must be:

$$
\begin{aligned}
& 2 \mathrm{~Np}(\mathrm{I}) \text { in }(0,0,0),\left(\frac{1}{2}, \frac{1}{2}, 0\right), \\
& 2 \mathrm{~Np}(\mathrm{II}) \text { in }\left(\frac{1}{2}, 0, u\right),\left(0, \frac{1}{2}, \bar{u}\right)
\end{aligned}
$$

The space-group symmetry is $P 42_{1}$.
The single parameter value is readily determined, particularly with the aid of the observed intensities in the back-reflection region. The value of u is

$$
u=0.375 \pm 0.015
$$

The last column of Table 2 gives the values of the quantity $|F|^{2} p$ as calculated from the structure given above. F is the structure factor and p the

Table 2. Diffraction data for $\beta-\mathrm{Np}$ at $313^{\circ} \mathrm{C}$.

$H_{1} H_{2} H_{3}$	$\sin ^{2} \theta$		Observed intensity*	$\left\|F^{\prime}\right\|^{2} p$
	Calc.	Obs.		
001	0.0516	-	-	$0 \cdot 1$
101	$0 \cdot 0764$	$0 \cdot 0769$	w -	$2 \cdot 0$
200	$0 \cdot 0991$	$0 \cdot 1009$	w	$8 \cdot 0$
111	$0 \cdot 1012$	0.1027	m	11.6
201	$0 \cdot 1507$	-	-	$0 \cdot 4$
211	$0 \cdot 1755$	$0 \cdot 1773$	$v w$	$4 \cdot 0$
220	$0 \cdot 1982$	$0 \cdot 2005$	\boldsymbol{w}	$8 \cdot 0$
002	$0 \cdot 2064$	$0 \cdot 2089$	vvw	$1 \cdot 0$
102	$0 \cdot 2312$	$0 \cdot 2306$	$v w$	$4 \cdot 0$
221	$0 \cdot 2498$	-	-	$0 \cdot 4$
112	$0 \cdot 2560$	0.2585	$v w$	$4 \cdot 0$
301	$0 \cdot 2746$	$0 \cdot 2777$	Trace	$2 \cdot 0$
311	$0 \cdot 2994$	$0 \cdot 3018$	$m s$	$23 \cdot 2$
202	$0 \cdot 3055$	-	-	$4 \cdot 0$
212	$0 \cdot 3303$	0.3323	w -	$8 \cdot 0$
321	$0 \cdot 3737$	$0 \cdot 3768$	$v w-$	$4 \cdot 0$
400	$0 \cdot 3964$	$0 \cdot 3991$	$v w$	$8 \cdot 0$
222	$0 \cdot 4046$	-	-	$4 \cdot 0$
302	$0 \cdot 4294$	0.4321	vvw	$4 \cdot 0$
401	0.4480	-	-	$0 \cdot 4$
312	0.4542	0.4563	$v w$	$8 \cdot 0$
003	0.4644	-	-	$2 \cdot 9$
411	0.4728	0.4747	$v w-$	$4 \cdot 0$
103	0.4892	-	-	$2 \cdot 0$
420	0.4955	0.4988		16.0
331	0.4976 \}	$0 \cdot 4988$	$w+$	11.6
113	0.5140	-	-	$0 \cdot 4$
322	0.5285	$0 \cdot 5305$	$v w+$	$8 \cdot 0$
421	$0 \cdot 5471$	-	-	$0 \cdot 7$
203	0.5635	0.5670	$v w+$	$11 \cdot 6$
213	$0 \cdot 5883$	$0 \cdot 5911$	vvw	$4 \cdot 0$
402	$0 \cdot 6028$	$0 \cdot 6038$	$v w-$	$4 \cdot 0$
412	$0 \cdot 6276$	0.6301	$v w$	$8 \cdot 0$
332	$0 \cdot 6524$	$0 \cdot 6560$	$v v w+$	$4 \cdot 0$
223	$0 \cdot 6626$	$0 \cdot 6636$	$v w+$	$11 \cdot 6$
501,431	0.6710	-		$2 \cdot 0+4 \cdot 0$
303	$0 \cdot 6874$	-	-	$2 \cdot 0$
511	$0 \cdot 6958$	$0 \cdot 6979$	m	$23 \cdot 2$
422	$0 \cdot 7019$	-	-	$8 \cdot 0$
313	0.7122	-	-	$0 \cdot 7$
521	0.7701	-	-	$4 \cdot 0$
323	0.7865	-	-	$4 \cdot 0$
440	0.7928	0.7950	$v w$	$8 \cdot 0$
004	0.8256	-	-	0
502,432	0.8258	0.8280	w	$4 \cdot 0+8 \cdot 0$
441	0.8444	-	-	$0 \cdot 4$
104	0.8504	-	-	0
512	0.8506	0.8511	20	$8 \cdot 0$
403	0.8608	$0 \cdot 8620$	30	$11 \cdot 6$
114	0.8752	0.8753	50	$16 \cdot 0$
413	0.8856	0.8861	15	$4 \cdot 0$
600	0.8920)	0.8939	50	$8 \cdot 0$
531	0.8940 \}	0.8939	50	$23 \cdot 2$
333	0.9104	-	-	$0 \cdot 4$
204	0.9247	-	-	0
522	0.9249	0.9249	16	$4 \cdot 0$
601	0.9436	-	-	$0 \cdot 4$
214	0.9495	-	-	0
423	0.9599	0.9601	100	$23 \cdot 2$
611	0.9683	-	-	0.7
620	0.9910	0.9911	80	$16 \cdot 0$

* Intensities are given as $s=$ strong, $m=$ medium, $w=$ weak and $v w=$ very weak except in the back-reflection region where the $2: 1$ ratio for the well-resolved $\alpha_{1} \alpha_{2}$-doublet permits quantitative intensity estimates.
multiplicity. The atomic scattering power was treated as a constant. All factors varying continuously with

Table 3. Unit-cell dimensions and calculated density for $\beta-\mathrm{Np}$

Temp. $\left({ }^{\circ} \mathrm{C}.\right)$	$a_{1}(\AA)$	$a_{3}(\AA)$	$\varrho\left(\mathrm{g} . \mathrm{cm} .^{-3}\right)$
282	$4 \cdot 883 \pm 0 \cdot 002$	$3 \cdot 389 \pm 0 \cdot 002$	$19 \cdot 47$
300	$4 \cdot 889$	3.388	$19 \cdot 42$
313	$4 \cdot 897$	$3 \cdot 388$	$19 \cdot 36$
360	$4 \cdot 910$	$3 \cdot 390$	$19 \cdot 25$
425	$4 \cdot 928$	$3 \cdot 390$	$19 \cdot 11$
480	$4 \cdot 954$	$3 \cdot 387$	$18 \cdot 91$
500	$4 \cdot 966$	$3 \cdot 387$	$18 \cdot 82$
20	$(4 \cdot 799)$	$(3 \cdot 388)$	$(20 \cdot 16)$

scattering angle having been omitted, calculated values of $|F|^{2} p$ should be compared with observed intensities only for neighboring reflections.

As in $\alpha-\mathrm{Np}$, each Np atom in the $\beta-\mathrm{Np}$ structure forms four strong bonds. The lengths of these and of secondary bonds are:

	$20^{\circ} \mathrm{C}$.	$313^{\circ} \mathrm{C}$.	$500^{\circ} \mathrm{C}$.
$\mathrm{Np}(\mathrm{I})-4 \mathrm{~Np}(\mathrm{II})$	$2 \cdot 72 \AA$	$2 \cdot 76 \AA$	$2 \cdot 79 \AA$
$-4 \mathrm{~Np}(\mathrm{II})$	$3 \cdot 20$	$3 \cdot 24$	$3 \cdot 26$
$-2 \mathrm{~Np}(\mathrm{I})$	$3 \cdot 39$	$3 \cdot 39$	$3 \cdot 39$
$-4 \mathrm{~Np}(\mathrm{I})$	$3 \cdot 39$	$3 \cdot 46$	$3 \cdot 51$
$\mathrm{~Np}(\mathrm{II})-4 \mathrm{~Np}(\mathrm{I})$	$2 \cdot 72$	$2 \cdot 76$	$2 \cdot 79$
$-4 \mathrm{~Np}(\mathrm{I})$	$3 \cdot 20$	$3 \cdot 24$	$3 \cdot 26$
$-2 \mathrm{~Np}(\mathrm{II})$	$3 \cdot 39$	$3 \cdot 39$	$3 \cdot 39$
$-4 \mathrm{~Np}(\mathrm{II})$	$3 \cdot 50$	$3 \cdot 56$	$3 \cdot 61$

The four strong bonds must be regarded as essentially covalent in character. A reasonable value for the single-bond radius of neptunium (with six valence electrons) is $1.40 \AA$. The 'strength' of each of the four short bonds, as defined by Pauling (1947), is then $1 \cdot 35$.

The four $N p(\mathrm{II})$ atoms closest to a $N p(\mathrm{I})$ atom are at the corners of a deformed tetrahedron, the bond angles being 102° and 125° (at 313° C.). The four close $\mathrm{Np}(\mathrm{I})$ atoms about a $\mathrm{Np}(\mathrm{II})$ atom lie at the corners of a square of edge $3.46 \AA$ with the $\mathrm{Np}(\mathrm{II})$ atom 1.27 \AA above the square so that the bond angles are 78°.

The probable existence of a third form of neptunium metal

Preliminary experiments strongly indicate the existence of a body-centered cubic form of neptunium metal ($\gamma-\mathrm{Np}$) at temperatures immediately below the melting point. The transition point $\beta-\mathrm{Np}$ to $\gamma-\mathrm{Np}$ seems to be at about $570^{\circ} \mathrm{C}$.

By the time the experiments at about $600^{\circ} \mathrm{C}$. were performed, the surface of metal pieces of the original sample had become covered with a fairly thick layer of NpO which largely prevented the X -rays from reaching the underlying metal. With one single exception, all of the observed diffraction lines correspond to the lines of NpO . However, some of the NpO lines appear with greater than normal intensity. These abnormally strong NpO lines and the single line which cannot be ascribed to NpO correspond to the diffraction lines of a body-centered cubic lattice with $a=3.52 \AA$ (at 600° C.). The unit-cell edge of NpO
at $600^{\circ} \mathrm{C}$. is $a=4.979 \pm 0.003 \AA$ and is thus $l^{\prime} 2$ times as large as that of the cubic body-centered structure.

Clearly the evidence for the existence of $\gamma-\mathrm{Np}$ is not sufficiently convincing to merit universal acceptance. Further experiments in the interval $550^{\circ}-$ $640^{\circ} \mathrm{C}$. will therefore be carried out as soon as a new metal sample becomes available.

The unit-cell edge of $\gamma-\mathrm{Np}$ extrapolated to $20^{\circ} \mathrm{C}$. is about $a=3.43 \AA$, and the extrapolated value of the interatomic distance is thus $\mathrm{Np}-8 \mathrm{~Np}=2.97 \AA$. The calculated density at $600^{\circ} \mathrm{C}$. is $\varrho=18.0 \mathrm{~g} . \mathrm{cm} .^{-3}$, and at $20^{\circ} \mathrm{C} . \varrho=19 \cdot 3 \mathrm{~g} . \mathrm{cm} .^{-3}$.

Structural relationships between the neptunium metal phases

The crystal structure of $\alpha-\mathrm{Np}$ was described in a recent paper. The orthorhombic unit-cell contains eight atoms. The space group is Pmna, and the atomic positions are:

$$
\begin{aligned}
& 4 \mathrm{~Np}(\mathrm{I}) \text { in } \pm\left(\frac{1}{4}, y_{1}, z_{1}\right),\left(\frac{1}{4}, \frac{1}{2}-y_{1}, z_{1}+\frac{1}{2}\right), \\
& 4 \mathrm{~Np}(\mathrm{II}) \text { in } \pm\left(\frac{1}{4}, y_{2}, z_{2}\right),\left(\frac{1}{4}, \frac{1}{2}-y_{2}, z_{2}+\frac{1}{2}\right),
\end{aligned}
$$

the parameter values being

$$
\begin{array}{ll}
y_{1}=0.208 \pm 0.006, & z_{1}=0.036 \pm 0.006 \\
y_{2}=0.842 \pm 0.006, & z_{2}=0.319 \pm 0.006
\end{array}
$$

Both the $\beta-\mathrm{Np}$ and the $\gamma-\mathrm{Np}$ structures can be described in terms of a cell containing eight atoms and resembling that of $\alpha-N p$. When this is done, the atomic positions of all three forms may be described in a uniform way by means of the four parameters $y_{1}, z_{1}, y_{2}, z_{2}$ already used in describing the $\alpha-\mathrm{Np}$ structure. The following comparison illustrates the degree of relationship between the three structures.

	$\alpha-\mathrm{Np}\left(20^{\circ} \mathrm{C}.\right)$	$\beta-\mathrm{Np}\left(313^{\circ} \mathrm{C}.\right)$	$\gamma-\mathrm{Np}\left(600^{\circ} \mathrm{C}.\right)$
$a_{1}(\AA)$	4.723	4.897	4.85
$a_{2}(\AA)$	4.887	4.897	4.85
$a_{3}(\AA)$	6.663	6.776	6.86
$a_{1}: a_{2}: a_{3}$	$0.966 .1: 1.1 .363$	$1: 1.1 .384$	$1.1: / 2$
y_{1}	0.208	0.250	0.250
z_{1}	0.036	0	0
y_{2}	0.842	0.750	0.750
z_{2}	0.319	0.313	0.250

In view of the close similarity between the β and γ forms it might have been expected that the axial ratio and the atomic positions of $\beta-\mathrm{Np}$ would approach those of $\gamma-\mathrm{Np}$ as the temperature increases towards the $\beta-\gamma$ transition point. This is not the case. Thus the $a_{3}: a_{1}$ ratio deviates more from the ideal value of γ^{2} at $500^{\circ} \mathrm{C}$. than it does at $282^{\circ} \mathrm{C}$.

It is of interest to note that the tendency to form four strong bonds persists to within $100^{\circ} \mathrm{C}$. of the melting point. The directions of these four short bonds differ markedly for the two kinds of neptunium atoms and from the α structure to the β structure. Hence it is idle speculation to try to correlate the bond
directions with directions of maximum overlapping of atomic wave functions.

The interatomic distances in the neptunium metal structure are so short (and the densities so high) that one must assume at least six valence electrons and at most one $5 f$ electron.

Miss Anne Plettinger and Dr Stanley Siegel gave valuable aid in calibrating the high-temperature camera and Miss Plettinger also by taking some of the diffraction patterns of neptunium metal. Sincere thanks are due Dr James C. Wallman for the use of
his metal samples and Dr Sherman Fried for having made the exceptionally thin-walled capillary of fused quartz.

References

Buerger, M. J., Buerger, N. W. \& Chesley, F. G. (1943). Amer. Min. 28, 285.

Jay, A. H. (1933). Proc. Roy. Soc. A, 142, 237.
Pauling, L. (1947). J. Amer. Chem. Soc. 69, 542.
Westrum, E. F. \& Eyring, LeRoy. (1951). J. Amer. Chem. Soc. 73, 3399.
Zachariasen, W. H. (1952). Acta Cryst. 5, 660.

On the Structure of the Paratungstate Ion

By Ingyar Lindqvist
Institute of Chemistry, University of Uppsala, Uppsala, Sweden and Pennsylvania State College, State College, Pa., U.S.A.

(Received 10 April 1952)
The structure of the complex ion in $5 \mathrm{Na}_{2} \mathrm{O} .12 \mathrm{WO}_{3} \cdot 28 \mathrm{H}_{2} \mathrm{O}$ has been determined, using a new vector-algebraic method. The formula of the ion, $\mathrm{W}_{12} \mathrm{O}_{46}^{20-}$, has no direct relation to the analytical formula, which would require a $\mathrm{W}_{12} \mathrm{O}_{41}^{10-}$ ion for the paratungstate to be a neutral salt.

Crystals

The formula of sodium paratungstate has recently been determined as $5 \mathrm{Na}_{2} \mathrm{O} .12 \mathrm{WO}_{3} .28 \mathrm{H}_{2} \mathrm{O}$. The symmetry is triclinic, space-group $P \overline{1}$. Constants and estimated errors are:

$$
\begin{gathered}
\alpha=86^{\circ} 0^{\prime} \pm 15^{\prime}, \beta=113^{\circ} 20^{\prime} \pm 15^{\prime}, \gamma=94^{\circ} 0^{\prime} \pm 15^{\prime} \\
a=11 \cdot 77 \pm 0 \cdot 03, \quad b=22 \cdot 19 \pm 0 \cdot 05, \quad c=12 \cdot 44 \pm 0 \cdot 02 \AA
\end{gathered}
$$

There are 24 tungsten atoms in the cell (Saddington \& Cahn, 1950). Single crystals of this paratungstate were prepared using the same procedure as the authors quoted. The crystal used for the X-ray investigation was prismatic with c as prism axis. Weissenberg photographs were taken with $\mathrm{Cu} K$ radiation and the c axis as rotation axis. Relative $|F|^{2}$ values were calculated from the estimated intensities with the help of Lu 's curves (Lu, 1943). An appreciable absorption made the intensity values less valid. It was.observed that reflexions with $h+k$ odd had very small intensities (the sum of their contributions was only 1.5% of the sum of all intensities). The point positions of the heavy tungsten atoms thus can be considered as corresponding to a C-centered unit cell, the larger dimensions being due to Na^{+}and $\mathrm{H}_{2} \mathrm{O}$. The calculation of the three-dimensional Patterson function $P(x, y, z)$ then can be reduced to one-quarter of the unit cell. The functions $P\left(x, y_{n / 60}, z\right)$ were computed on the X-RAC analogue computer for $y_{n}=0-15$, and the structure was derived by a special method.

Method of structure determination

The method of structure determination is based on the relations imposed upon the Patterson function if the structure has a centre of symmetry. Fig. 1 shows the vectors obtained for two twofold positions. They evidently form a parallelogram, where the vectors

Fig. 1. Vector parallelogram produced by two twofold positions with a centre of symmetry.
between equivalent atoms are the diagonals. The vector equations are

$$
A+B=a, A-B=b
$$

Each pair of two twofold positions will give rise to such a parallelogram in the Patterson function.

This fact indicates a simple method of analyzing the $P(x, y, z)$ vectors. Their components are tabulated and all possible vector sums are calculated. If the resulting vector sum is equal to one of the vectors in $P(x, y, z)$, the first of the vector equations is evidently fulfilled. It then remains to see if the corresponding vector difference is also found in $P(x, y, z)$.

